
Data-Centric Tutorial,
Topics and Demo

Bridging Non Real-Time
& Real-Time

Gordon A. Hunt
gordon@rti.com
www.rti.com

Owner
Text Box
Approved for public release; distribution is unlimited

Agenda

Net-Centricity
– Challenges and where we are….

Implementing Net-Centricity
– Approaches to implementing

Applicable Standards
– Data-Distribution Service
– Data Storage and RDBMS
– Service Oriented Architecture

Concepts Demo / Q&A

Net-Centric Operations Challenge

More data…
from more sources…
at faster rates…
to more destinations…
via diverse systems...

Increase the
Speed of Command

Data
A. DoD Net-Centric Data Strategy
B. Design Tenet: Make data visible
C. Design Tenet: Make data accessible
D. Design Tenet: Make data understandable
E. Design Tenet: Make data trustable
F. Design Tenet: Make data interoperable
G. Design Tenet: Provide Data Management
H. Design Tenet: Be Responsive to User Needs

Services
A. Design Tenet: Service-Oriented Architecture
B. Design Tenet: Open Architecture
C. Design Tenet: Scalability
D. Design Tenet: Availability
E. Design Tenet: Accommodate heterogeneity
F. Design Tenet: Decentralized operations and management
G. Design Tenet: Enterprise Service Management

Information Assurance/Security
A DoD Net-Centric IA Strategy
B. Design Tenet: Net Centric IA Posture and Continuity of Operations
C. Design Tenet: Identify Management, Authentication and Privileges
D. Design Tenet: Mediate Security Assertions
E. Design Tenet: Cross Security Domains Exchange
F. Design Tenet: Encryption and HAIPE
G. Design Tenet: Employment of Wireless Technologies
H. Other

Transport
A. Design Tenet: IPv6
B. Design Tenet: Packet Switched Infrastructure
C. Design Tenet: Layering, Modularity
D. Design Tenet: Transport Goal
E. Design Tenet: Network Connectivity
F. Design Tenet: The Concurrent Transport of information Flows
G. Design Tenet: Differentiated Management of Quality-of-Service
H. Design Tenet: Inter-Network Connectivity
I. Design Tenet: Joint Technical Architecture
J. Design Tenet: RF Acquisition
K. Design Tenet: Joint Net-Centric Capabilities
L. Design Tenet: Operations and Management of Transport and Services

DoD Net-Centric Tenets

DoD Net-Centric Tenets

Data
A. DoD Net-Centric Data Strategy
B. Design Tenet: Make data visible
C. Design Tenet: Make data accessible
D. Design Tenet: Make data understandable
E. Design Tenet: Make data trustable
F. Design Tenet: Make data interoperable
G. Design Tenet: Provide Data Management
H. Design Tenet: Be Responsive to User Needs

Services
A. Design Tenet: Service-Oriented Architecture
B. Design Tenet: Open Architecture
C. Design Tenet: Scalability
D. Design Tenet: Availability
E. Design Tenet: Accommodate heterogeneity
F. Design Tenet: Decentralized operations and management
G. Design Tenet: Enterprise Service Management

Information Assurance/Security
A DoD Net-Centric IA Strategy
B. Design Tenet: Net Centric IA Posture and Continuity of Operations
C. Design Tenet: Identify Management, Authentication and Privileges
D. Design Tenet: Mediate Security Assertions
E. Design Tenet: Cross Security Domains Exchange
F. Design Tenet: Encryption and HAIPE
G. Design Tenet: Employment of Wireless Technologies
H. Other

Transport
A. Design Tenet: IPv6
B. Design Tenet: Packet Switched Infrastructure
C. Design Tenet: Layering, Modularity
D. Design Tenet: Transport Goal
E. Design Tenet: Network Connectivity
F. Design Tenet: The Concurrent Transport of information Flows
G. Design Tenet: Differentiated Management of Quality-of-Service
H. Design Tenet: Inter-Network Connectivity
I. Design Tenet: Joint Technical Architecture
J. Design Tenet: RF Acquisition
K. Design Tenet: Joint Net-Centric Capabilities
L. Design Tenet: Operations and Management of Transport and Services

Data-Centric

Service Oriented

Open Architecture

Secured

End-to-End

Added
BonusQuality-of-Service

FORCEnet Technical Reference Guide

Netcentric Operations/Warfare
Service Orientated Architecture
– Reusable services
– Expose service functionality
– Abstraction between interfaces

and implementations
– Standard metadata
– Discovery
– Standard Protocols

Composeable platform
independent pub/sub
Distributed web services
Extensible markup language
Data-oriented systems
Real-time systems support
Human systems integration
Information Assurance

FORCEnet Technical Reference Guide

Netcentric Operations/Warfare
Service Orientated Architecture
– Reusable services
– Expose service functionality
– Abstraction between interfaces

and implementations
– Standard metadata
– Discovery
– Standard Protocols

Composeable platform
independent pub/sub
Distributed web services
Extensible markup language
Data-oriented systems
Real-time systems support
Human systems integration
Information Assurance

Data-Centric

Service Oriented

Open Architecture

Secured

End-to-End

Network
levelQuality-of-Service

First Lieutenant Christopher S.Tsirlis, Communications Officer USMC

First Lieutenant Christopher S.Tsirlis, Communications Officer USMC

First Lieutenant Christopher S.Tsirlis, Communications Officer USMC

First Lieutenant Christopher S.Tsirlis, Communications Officer USMC

First Lieutenant Christopher S.Tsirlis, Communications Officer USMC

Is it Enough? Where are we Going?

Net-Centricity

How do we get there?
How do we implement it?

Net-Centricity and Programming Paradigms

Procedural Programming
– ADA, C, C++, Fortran, …

Object Orientated Programming
– Objects, Abstraction, Encapsulation, Polymorphism,

Inheritance
Component Orientated Programming
– (Dynamic) Semantic Markup, Component Independent

Content, Service Interface Encapsulation
Message Orientated Programming
– Messages as first class objects

Data Orientated Programming

Data Orientated Programming

Tenants of Data Orientated Programming
– Expose the data
– Hide the code
– Separate data and code

Data-handling and data-processing

– Code generated from Interfaces
– Loosely coupled

Data-Oriented = Data-Centric
Data-Centric = Net-Centric

Object-Orientated vs. Data-Orientated

Loosely CoupledTightly coupled

Changes:
Change declarative data file

Changes:
Read & change code

Strict separation of parser, validator,
transformer, and logic

Combined processing, no
restrictions

Messages are primary
Data model or schema

API / object model

Must agree on data mapping,
mapping system

Mobile code
Separate data & codeIntermix data & code
Hide the codeExpose methods – code
Expose the data (with MR format)Hide the data (encapsulation)

DOPOOP

NAVAIR – Pat Kohli

1.0 Common
Services

2.0 Sensors 3.0 Fusion 4.0 BMC2

5.0 Comms 7.0
Visualization

8.0 Training6.0 Sensor
Control

• Grouping the modules into
functional clusters does nothing to
change that reality and ease
software integration

E-2 Software Component Architecture

DIA
FIL

MCP
MUX

NAV
TDM
IPCC

RDR
ESM

IFF
SAFE

RIP
TRK MSI

WAC TDA

L4
L16

L11 SEN HMI ACIS

• Hawkeye has functionally
oriented software modules

• Each module talks to just about
every other module

• Adding new functionality drives
integration re-work to just about
every other module

CEC

• Changing the communication between the modules can ease integration, when
the new ‘Publish Subscribe’ approach is used – each module publishes its
output w/o regard to who is receiving it, in contrast to the point-to-point
approach of traditional communication

1.0 Common
Services

2.0 Sensors 3.0 Fusion 4.0 BMC2

5.0 Comms 7.0
Visualization

8.0 Training6.0 Sensor
Control

IFF
SAFE

MUX
MCP
FIL

L4 L11

DIA NAV
TDM
IPCC

RDR
ESM

RIP
TRK

CEC
MSI

WAC TDA

L16
SEN HMI ACIS

Distributed “Data” Framework

It’s about an architecture that can assimilate evolving
functionality, rather than remaining set in time

Standards-Based
NetCentricity

Data Distribution
Data Management

Data Access

Relational
Database

Component

Relational
Database

Component

Standard APIs

Standards-Based Architecture

Standard Components
and Interfaces

DDS/JMS SQL/ODBC/JDBC

TransportsTransports

Data
Distribution
Component

Data
Distribution
Component

Standard Networks
and Interfaces

IP/Backplane/GIG/Adhoc/Fabric

COTS products implementing a standards-based
high-performance distributed data-management solution

Data Caching and Distribution

User Application(s)User Application(s)

DDS/SQL/ODBC/JDBC/SOA

Data-Distribution and Real-Time

Non-real-time Soft real-time Hard real-time Extreme real-time

Java/RMIJava/JMS

CORBA

MPI

Java RTSJ (soft RT) RTSJ (hard RT)

Web Services

M
es

sa
gi

ng
 T

ec
hn

ol
og

ie
s

an
d

St
an

da
rd

s
M

es
sa

gi
ng

 T
ec

hn
ol

og
ie

s
an

d
St

an
da

rd
s

Data Distribution Service / DDS

RT CORBA

Adapted from NSWC-DD OA Documentation

Data Centric Models

Point-to-Point
Telephone, TCP
Simple, high-bandwidth
Leads to stove-pipe systems

Client-Server
File systems, Database, RPC, CORBA, DCOM
Good if information is naturally centralized
Single point failure, performance bottlenecks

Publish/Subscribe Messaging
Magazines, Newspaper, TV
Excels at many-to-many
communication
Excels at distributing time-critical
information

Middleware Information Models

Replicated Data
Libraries, Distributed databases
Excels at data-mining and analysis

Publish-Subscribe Model

Producer(s) Middleware
Consumers

Publisher does not need to
know who the subscribers are.

Subscribers do not need to
know where the data “lives”

or continually ask for it.

• Efficient mechanism for data communications

DataBase

DataBase
DataBase

Global Data Space

Data Distribution Service (DDS)
Standard

Data Distribution Service for Real-Time Systems
– Adopted in June 2003
– Revised in April 2005
– API specification for Data-Centric Publish-Subscribe

communication for distributed real-time systems.
– http://www.omg.org/docs/ptc/05-03-09.pdf

RTI’s role
– Member of OMG since 2000
– Co-authors of the original DDS RFP
– Co-authors of the DDS specification adopted in June 2003
– Chair of the DDS Finalization and Revision Task Forces
– Providers of a COTS implementation of the specification

DDS – Loosely Coupled Architecture

Data-centric communications
– Just declare your intent to publish or receive data.
– No need to make a special request for every piece

of data.

DDS

Alarm AlarmData Data

Publisher Subscriber Subscriber

Applications just
send or receive data
with a standard API.

DDS – Quality of Service

Data distribution with minimal overhead
– No reply confirmation needed
– Very flexible QoS on a per-data-stream basis

Determinism vs. reliability
Cyclic acyclic messages
Bandwidth control

– Fault tolerance (esp. over unreliable media)

Distributed
Node

I have
data
every
1 sec.

Distributed
Node

Move to
Position

X,Y
Distributed

Node

I need
data
every
1 sec.

DDS – Advantages

Decoupling
• Location: reduce dependencies
• Redundancy: multiple readers & writers
• Time: data when you want it
• Platform: connect any set of systems

Benefits
• Modular structure
• Flexibility
• Power

Global Data Space

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node Pub Pub

Sub Pub

SubSub
Alarm

Sensor

Global Data Space

QoS Contract “Request / Offered”

Ensure that the
compatible QoS
parameters are set.

Offered
QoS

Requested
QoS

QoS not
compatible

Communication not established

Subscriber

Data
Reader

Data
Writer

Publisher

Topic

QoS:Durability
QoS:Presentation
QoS:Deadline
…

QoS:Latency_Budget
QoS:Ownership
QoS:Liveliness
QoS:Reliability

X

Domain
Participant

Domain
Participant

Topic

QoS: Quality of Service

TRANSPORT PRIORITYCONTENT FILTERS

PRESENTATIONLIFESPAN

DESTINATION ORDERENTITY FACTORY

LATENCY BUDGETDEADLINE

LIVELINESSTIME BASED FILTER

OWNERSHIP STRENGTHRELIABILITY

OWNERSHIPRESOURCE LIMITS

PARTITIONWRITER DATA LIFECYCLE

GROUP DATAREADER DATA LIFECYCLE

TOPIC DATAHISTORY

USER DATADURABILITY
QoS PolicyQoS Policy

Vo
la

til
ity

U
ser Q

oS
D

el
iv

er
y

Presentation
R

edundancy
In

fr
as

tr
uc

tu
re

Transport

Relational
Database

Component

Relational
Database

Component

Standard APIs

Standards-Based Architecture

Standard Components
and Interfaces

DDS SQL/ODBC/JDBC

TransportsTransports

Data
Distribution
Component

Data
Distribution
Component

Standard Networks
and Interfaces

IP/Backplane/GIG/Adhoc/Fabric

COTS products implementing a standards-based
high-performance distributed data-management solution

Data Caching and Distribution

User Application(s)User Application(s)

DDS/SQL/ODBC/JDBC/SOA

How to manage the
rapidly increasing
amount of real-time
information in net-
centric[?] systems?
How to make
information available
where and when
needed?

How can we manage
the rapidly increasing
amount of real-time
information in
net-centric systems?

How do we make
information available
where and when it is
needed?

Data Monitoring in an Ever-Changing
Environment

Ever thought of
maintaining critical
real-time data
in a centralized
database?

Consider the Advantages…
- Flexibility
- Interoperability
- Scalability
- Straightforward Solution

Obvious Problems…
- Slow response time
- Performance bottleneck
- Single point of failure

Centralized Database

Data cached
locally

Caches are kept
coherent

The Network is the Database

Applications view distributed data as if it resides
in a centralized database

Global Data
Space

Database Database

Database Database

Today: Different Data Solutions

Database Management Systems
– Non-RT performance, non-distributed
– Complex queries, dynamic sorting, standard SQL I/F, enterprise

solution

Data Distribution Services
– High performance, dynamic architectures, real-time solution
– What do you do with the data once you get it there?

Distributed
Data

Distributed
NodeDistributed

Node

Distributed
Node S

S S

Database
Mgmt

Distributed
Node

T

Distributed
Node

T

Distributed
NodeT

T= transaction, S = Sample

A Standards Based Global Data Space

Data accessible to all interested applications:
– Data distribution (publishers and subscribers): DDS
– Data management (storage, retrieval, queries): SQL
– Rich QoS, automatic discovery and configuration

– Real-time and/or high-performance access to data

DBMS

DBMSDBMS

Global Data Space

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node SQL SQL

DDS SQL

DDSSOA

Distributed Data Management

Embedded-to-Enterprise Connectivity
– From tiny micro-devices…
– To enterprise databases

Flexible DDS networking
– Automatic peer discovery
– Full QoS control
– Fault tolerant

Distributed database caching
– Automatic process-data collocation
– 10 usec data access
– High-availability of multiple copies

Standards-based COTS

DBMS

DBMSDBMS

Global Data Space

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

SQL SQL

DDS SQL

DDSSOA

SQL App
(RT)

SkyBoard

Client
Application

Isolates real-time data performance from
interference from non-real-time systems

JMS
Enterprise

Soap/XML

.NET

.JSP

JMS
Non-Real-
Time Publish
Subscribe
Enterprise

End-to-End Integration

Global Data
Space

Data access from the Web Services or
Enterprise networks does not hinder the real-
time performance Network
Additional portals to other systems can be
added dynamically

Pub

Sub

Pub

NDDS
DDS

SOA

SQL/JMS

SQL

Concepts DEMO

Distributed C2
– RT Pub/Sub
– Web-based logistics

Cached to RDBMS
– Dynamic and

automatic
– Sync’d with

data-model

PDA inputs
– Shooter
– Targeter
– Select Team

For more information:
info@rti.com

gordon@rti.com
www.rti.com

Thank You!

You can also find more information at our booth,
and more in depth demos, and presentations.

